منابع مشابه
Greedy Random Walk
We study a discrete time self interacting random process on graphs, which we call Greedy Random Walk. The walker is located initially at some vertex. As time evolves, each vertex maintains the set of adjacent edges touching it that have not been crossed yet by the walker. At each step, the walker being at some vertex, picks an adjacent edge among the edges that have not traversed thus far accor...
متن کاملWinning quick and dirty: the greedy random walk
As a strategy to complete games quickly, we investigate one-dimensional random walks where the step length increases deterministically upon each return to the origin. When the step length after the kth return equals k, the displacement of the walk x grows linearly in time. Asymptotically, the probability distribution of displacements is a purely exponentially decaying function of |x|/t . The pr...
متن کاملOn the greedy walk problem
This note introduces a greedy walk on Poisson and Binomial processes which is a close relative to the well known greedy server model. Some open problems are presented.
متن کاملA Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorics, Probability and Computing
سال: 2013
ISSN: 0963-5483,1469-2163
DOI: 10.1017/s0963548313000552